skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rajaei, Hoda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Epilepsy is a brain disorder that causes seizures, affecting nearly half a million children in the US alone. In this study, we aimed to use a nonlinear driven method to characterize scalp EEG recordings of pediatric epilepsy patients (PE: n=7) compared to pediatric control subjects (PC: n=7) in a clinical environment. A time-varying approach was used to construct functional connectivity networks (FCNs) of all subjects. Next, the FCNs are mapped into the form of undirected graphs that are subjected to the extraction of graph theory-based features. An unsupervised clustering technique based on K-mean is used to delineate the PE from the PC group. Our findings show a statistically significant difference in the mean FCNs between PC and PE groups (t(340)=- 15.9899, p<< 0.0001). Performance results showed an accuracy of 92.5% with a sensitivity of 90% and a specificity of 95.3%. This approach can help improve and validate the early diagnosis of PE by applying non-invasive scalp EEG signals. 
    more » « less
  2. null (Ed.)
    Using electroencephalography (EEG) data from epileptic patients 1 , we investigated and compared functional connectivity networks of three various types of epileptiform discharges (ED; single, complex & repetitive spikes) in 4 regions of the brain. Our results showed different connectivity patterns among three ED types within-and between-brain regions. The one-way ANOVA test indicated significant differences between the mean of the average connectivity matrices (ACMs) of the single spike, which characterize focal epilepsy, and the other two ED types (complex & repetitive) which characterize generalized epilepsy. The interictal EEG segments, through the connectivity patterns they yield, could be considered as one of the key indicators for the diagnosis of focal or generalized epilepsy. 
    more » « less